Эпигенетика: невидимый генетический отпечаток.

3 3737

Стремительное изучение эпигенетики приближает нас к пониманию самых фундаментальных принципов устройства и функционирования внутренних систем всех живых организмов.

Эпигенетика — это бурно развивающееся в последние годы направление современной науки. Наиболее очевидна роль эпигенетических механизмов в процессах развития, когда из клеток раннего зародыша, ДНК которых совершенно одинакова, возникает множество различающихся между собой специализированных клеток взрослого организма.

Оказалось, однако, что эта роль не исчерпывается только развитием и может проявляться и после его завершения. Исследования последних лет показали, что здоровье человека может в значительной степени зависеть от того, в каких условиях происходило его раннее развитие. Выявлено также, что эпигенетические модификации могут передаваться и последующим поколениям, влияя на различные фенотипические проявления у детей и даже внуков.

Знаете ли вы, что наши клетки обладают памятью? Они помнят не только то, что вы обычно едите на завтрак, но и чем питались во время беременности ваши мама и бабушка. Клетки хорошо помнят, занимаетесь ли вы спортом и как часто употребляете алкоголь. Память клеток хранит в себе ваши встречи с вирусами* и то, насколько сильно вас любили в детстве. Клеточная память решает, будете ли вы склонны к ожирению и депрессиям. И во многом благодаря клеточной памяти мы отличаемся от шимпанзе, хотя имеем с ним примерно одинаковый состав генома. Эту удивительную особенность наших клеток помогла понять наука эпигенетика.

* — Наиболее виртуозно это делает иммунная система, сохраняя антитела к большинству вирусов, когда-либо вторгавшихся в организм. Именно индивидуальные профили этих антител теперь можно «читать» с помощью метода ВироСкан, причем зафиксировать всю историю иммунных баталий можно по одному микролитру крови: «Следствие ведет ВироСкан. Новый подход выявляет большинство вирусов, с которыми сталкивался человек» [1].— Ред.

Эпигенетические ландшафты

Эпигенетика — довольно молодое направление современной науки. И пока она не так широко известна, как ее «родная сестра» — генетика. В переводе с греческого приставка «эпи-» означает «над», «выше», «поверх». Если генетика изучает процессы, которые ведут к изменениям в наших генах, в ДНК, то эпигенетика исследует изменения активности генов, при которых первичная структура ДНК остается прежней. Эпигенетика похожа на «командира», который в ответ на внешние стимулы (такие, как питание, эмоциональные стрессы, физические нагрузки) отдает приказы нашим генам усилить или, наоборот, ослабить их активность.*

* — Подробно об эпигенетических процессах и связанных с ними явлениях рассказано в статьях: «Развитие и эпигенетика, или история о минотавре» [2], «Эпигенетические часы: сколько лет вашему метилому?» [3], «Обо всех РНК на свете, больших и малых» [4], «Шестое ДНК-основание: от открытия до признания» [5].

Пожалуй, самое ёмкое и в то же время точное определение принадлежит выдающемуся английскому биологу, нобелевскому лауреату Питеру Медавару: «Генетика предполагает, а эпигенетика располагает».

Развитие эпигенетики как отдельного направления молекулярной биологии началось в сороковых годах прошлого столетия. Тогда английский генетик Конрад Уоддингтон сформулировал концепцию «эпигенетического ландшафта» (рис. 1), объясняющую процесс формирования организма [6]. Прошло несколько десятилетий, прежде чем эпигенетику стали воспринимать серьезно, как новую научную дисциплину. Такое положение сохранялось долго потому, что эпигенетика своими выводами подрывала устоявшиеся в генетике догмы.

Например, относительно наследования приобретенных признаков. Почти зеркально повторилась ситуация с открытием Б. Мак-Клинток мобильных элементов генома, в которые полвека мало кто хотел верить. Но после серии определяющих работ, проведенных в 70-х годах прошлого века Джоном Гёрдоном [7], Робином Холлидеем, Борисом Ванюшиным и другими, эпигенетику стали наконец воспринимать всерьез [8, 9, 10]. И уже недавно, на рубеже тысячелетий, был проведен ряд блестящих экспериментов, после которых стало ясно, что эпигенетические механизмы влияния на геном не только играют важнейшую роль в работе систем организма, но и могут наследоваться несколькими поколениями. Сразу в нескольких лабораториях были получены свидетельства, заставившие генетиков сильно задуматься.

Рисунок 1. К.Х. Уоддингтон и его рисунок «эпигенетического ландшафта». Шарик вверху обозначает первоначальные неспециализированные клетки зародыша. Под воздействием генетических и эпигенетических сигналов клетке будет задана траектория онтогенеза (развития), и она станет специализированной — клеткой сердца, печени и т.д. Рисунок с сайта www.computerra.ru.

Рисунок 2. Глаза двух дрозофил. Разная окраска глаз обусловлена эпигенетическими изменениями. Рисунок с сайта www.ethlife.ethz.ch.

Так, в 1998 году Р. Паро и Д. Кавалли проводили опыты с трансгенными линиями дрозофил, подвергая их тепловому воздействию. После этого дрозофилы меняли цвет глаз, и этот эффект — уже без внешнего влияния — сохранялся у нескольких поколений (рис. 2). Как обнаружилось, хромосомный элемент Fab-7 передавал эпигенетическую наследственность в процессе как митоза, так и мейоза [11].

В 2003 году американские ученые из Дюкского университета Р. Джиртл и Р. Уотерленд провели эксперимент с беременными трансгенными мышами агути (yellow agouti (Avy) mouse), которые имели желтую шерсть и предрасположенность к ожирению (рис. 3). Они добавляли в корм мышам фолиевую кислоту, витамин В12, холин и метионин. В результате этого появилось нормальное потомство без отклонений [12].

Пищевые факторы, выступавшие донорами метильных групп, путем метилирования ДНК нейтрализовали ген агути, вызывавший отклонения: фенотип их Avy-потомства изменялся за счет метилирования CpG-динуклеотидов в локусе Avy. Причем воздействие диеты сохранялось и в нескольких последующих поколениях: детеныши мышей агути, родившиеся нормальными благодаря пищевым добавкам, и сами рожали нормальных мышей. Хотя питание у них было уже обычное, не обогащенное метильными группами.

Рисунок 3. Подопытные мыши из лаборатории Рэнди Джиртла. Видно, как происходит изменение в окрасе шерсти детенышей в зависимости от приема матерью доноров метильных групп — фолиевой кислоты, витамина В12, холина и метионина. Рисунок из [12].

Вслед за этим, в 2005 году, журнал Science опубликовал работу Майкла Скиннера и его коллег из Вашингтонского университета. Они обнаружили, что, если в пищу беременным самкам крыс добавлять пестицид винклозолин, у их потомков мужского пола резко снижается количество и жизнеспособность сперматозоидов. И эти эффекты сохранялись на протяжении четырех поколений. Была четко установлена их связь с эпигеномом: ухудшение репродуктивной функции коррелировало с изменениями метилирования ДНК в зародышевой линии [13].

Ученые были вынуждены сделать сенсационный вывод: вызванные стрессом эпигенетические изменения, не затронувшие последовательность нуклеотидов ДНК, могут закрепляться и передаваться следующим поколениям!

Судьба записана не только в генах

Позже выяснилось, что и у людей влияние эпигенетических механизмов (рис. 4, 5) так же велико. Исследования, о которых дальше пойдет речь, приобрели широкую известность — они упоминаются почти в каждой научной работе по эпигенетике. Ученые из Голландии и США в конце 2000-х годов обследовали пожилых голландцев, родившихся сразу после Второй мировой войны. Период беременности их матерей совпал с очень тяжелым временем, когда в Голландии зимой 1944–1945 гг. был настоящий голод. Ученым удалось установить: сильный эмоциональный стресс и полуголодный рацион матерей самым негативным образом повлиял на здоровье будущих детей. Родившись с малым весом, они во взрослой жизни в несколько раз чаще были подвержены болезням сердца, ожирению и диабету, чем их соотечественники, родившиеся на год-два позже (или раньше) [14].

Анализ их генома показал отсутствие метилирования ДНК именно в тех участках, где оно обеспечивает сохранность хорошего здоровья. Так, у пожилых голландцев, чьи матери пережили голод, существенно снижалось метилирование гена инсулиноподобного фактора роста 2 (ИФР-2), из-за чего количество ИФР-2 в крови повышалось. А этот фактор, как известно, имеет обратную связь с продолжительностью жизни: чем выше в организме уровень ИФР, тем жизнь короче [15].

Рисунок 4. Структура хроматина и механизмы эпигенетических модификаций. Хроматин — комплекс белков и нуклеотидов, обеспечивающий надежное хранение и нормальную работу ДНК. В наших клетках упаковка ДНК похожа на склад бижутерии [18]. Иначе никак невозможно уложить спираль ДНК длиной в два метра в одно маленькое клеточное ядро. Нить ДНК наматывается в полтора оборота на многочисленные «бусинки», которые называются нуклеосомами. Эти нуклеосомы, в свою очередь, состоят из нескольких специальных белков, гистонов. Гистоны имеют «хвостики» — белковые наросты, которые могут удлиняться или укорачиваться особыми ферментами. Длина такого «хвоста» напрямую влияет на уровень активности генов, находящихся вблизи него. Рисунок из [19].

Рисунок 5. Рентгеновская кристаллическая структура нуклеосомы. Гистоны показаны желтым, красным, синим и зеленым цветами. Рисунок из [20].

Новозеландским ученым П. Глюкману и М. Хансону удалось сформулировать логическое объяснение взаимосвязи количества пищи во время беременности матери со здоровьем ребенка. В 2004 году в журнале Science вышла их статья, в которой они сформулировали «гипотезу несоответствия» (mismatch hypothesis) [16]. В соответствии с ней в развивающемся организме на эпигенетическом уровне может происходить прогностическая адаптация к условиям обитания, которые ожидаются после рождения.

Если прогноз подтверждается — это увеличивает шансы организма на выживание в мире, где ему предстоит жить, если нет — адаптация становится дезадаптацией, то есть болезнью. Например, если во время внутриутробного развития плод получает недостаточное количество пищи, в нем происходят метаболические перестройки, направленные на запасание пищевых ресурсов впрок, «на черный день».

Если после рождения пищи действительно мало, это помогает организму выжить. Если же мир, в который попадает человек, оказывается более благополучным, чем прогнозировалось, такой «запасливый» характер метаболизма может привести к ожирению и диабету 2-го типа на поздних этапах жизни. Именно этот вариант мы сегодня чаще всего и наблюдаем.

В целом, можно уверенно сказать, что период беременности и первых месяцев жизни является самым важным в жизни всех млекопитающих, в том числе и человека. Все имеющиеся сегодня данные говорят, что именно в этот период закладываются все основы не только физического, но и психического здоровья человека. И влияние этого начального периода жизни настолько велико, что не исчезает до самой глубокой старости, формируя — так или иначе — судьбу человека. Как метко выразился немецкий нейробиолог Петер Шпорк, «в преклонных годах на наше здоровье порой гораздо сильнее влияет рацион нашей матери в период беременности, чем пища в текущий момент жизни» [17]. В это трудно поверить, но факты прямо говорят об этом.

Эпигенетика помогла сделать очень важный вывод: от того, что ела мама во время беременности, в каком психологическом состоянии она находилась и сколько времени уделяла малышу в первые годы после его рождения, будет зависеть буквально вся дальнейшая жизнь ребенка. В это время закладываются основы всего.

Метилирование ДНК

Рисунок 6. Метилирование цитозинового основания ДНК. Схема метилированного цитозина. Зеленым овалом со стрелкой показан главный фермент метилирования — ДНК-метилтрансфера́за (DNMT), красным кругом — метильная группа (—СН3). Рисунок с сайта www.myshared.ru.

Наиболее изученным механизмом эпигенетической регуляции активности генов является процесс метилирования, который заключается в добавлении метильной группы (одного атома углерода и трех атомов водорода, —CH3) к цитозиновым основаниям ДНК, находящимся в составе CpG-динуклеотида (рис. 6). Уже известно, что метилирование ДНК у эукариот видоспецифично, и у беспозвоночных степень метилирования генома очень незначительна по сравнению с позвоночными и растениями.

Основы понимания функций метилирования были заложены еще полвека назад профессором МГУ Б.Ф. Ванюшиным и его коллегами. Хотя обычно считается (и вполне правильно), что метилирование «выключает» ген, не давая возможности регуляторным белкам связаться с ДНК, было обнаружено и обратное явление. Иногда метилирование ДНК выступает обязательным условием взаимодействия с белками — были описаны специальные m5CрG-связывающие белки [21].

Метилирование ДНК имеет наибольшее прикладное значение из всех эпигенетических механизмов, так как оно напрямую связано с рационом, эмоциональным статусом, мозговой деятельностью и другими факторами. Так что об этом стоит рассказать поподробнее. И начнем мы с рациона.

Сегодня уже известно, что многие пищевые продукты содержат компоненты, которые определенным образом влияют на эпигенетические процессы. Почти все женщины знают, что во время беременности очень важно потреблять достаточно фолиевой кислоты. Эпигенетика помогает понять исключительную важность этой кислоты в рационе: ведь всё дело в том самом метилировании ДНК. Фолиевая кислота вместе с витамином В12 и аминокислотой метионином является донором («поставщиком») метильных групп, необходимых для нормального метилирования.

Метилирование непосредственно участвует во многих процессах, связанных с развитием и формированием всех органов и систем ребенка: и в инактивации Х-хромосомы у эмбриона, и в геномном импринтинге, и в клеточной дифференцировке*. Соответственно, принимая фолиевую кислоту, будущая мама имеет неплохие шансы выносить здорового ребенка без отклонений.

* — Подробно об этом написано в статьях на «биомолекуле»: «Загадочное путешествие некодирующей РНК Xist по X-хромосоме» [22] и «Истории из жизни Х-хромосомы круглого червя-гермафродита» [23].

Витамин В12 и метионин почти невозможно получить из вегетарианского рациона, так как они содержатся преимущественно в животных продуктах. И дефицит витамина В12 и метионина, вызванный разгрузочными диетами беременной женщины, может иметь для ребенка самые неприятные последствия. Не так давно было обнаружено, что недостаток в рационе этих двух веществ, а также фолиевой кислоты, может стать причиной нарушения расхождения хромосом у плода. А это сильно повышает риск рождения ребенка с синдромом Дауна, что обычно считается простой трагической случайностью [24]. В свете этих фактов ответственность родителей сильно увеличивается, и списывать всё на несчастный случай теперь будет затруднительно.

Также известно, что недоедание и стресс в период беременности меняют в «худшую сторону» концентрацию целого ряда гормонов в организмах матери и плода: глюкокортикоидов, катехоламинов, инсулина, гомона роста и др. Из-за этого у зародыша происходят негативные эпигенетические изменения (ремоделирование хроматина) в клетках гипоталамуса и гипофиза [25]. Чем это чревато? Тем, что малыш появится на свет с искаженной функцией гипоталамо-гипофизарной регуляторной системы. Из-за этого он будет хуже справляться со стрессом самой различной природы: с инфекциями, физическими и психическими нагрузками и т.д. Вполне очевидно, что, плохо питаясь и переживая во время вынашивания, мама делает из своего будущего ребенка уязвимого со всех сторон неудачника.

Пластичность эпигенома: опасности и возможности

Выяснилось, что так же, как стресс и недоедание, на здоровье плода могут влиять многочисленные вещества, искажающие нормальные процессы гормональной регуляции (рис. 7). Они получили название «эндокринные дизрапторы» (разрушители). Эти вещества, как правило, имеют искусственную природу: человечество получает их промышленным способом для своих нужд. Самым ярким и негативным примером, пожалуй, является бисфенол А, который уже много лет применяется в качестве отвердителя при изготовлении изделий из пластмасс. Он содержится во всей пластиковой таре, которая используется сегодня в пищевой промышленности: в пластиковых бутылках для воды и напитков, в пищевых контейнерах и многом другом. Бисфенол А присутствует в жестяных банках консервов и напитков (им выстилают внутренний слой банок), а также в стоматологических пломбах.

Рисунок 6. Метилирование цитозинового основания ДНК. Схема метилированного цитозина. Зеленым овалом со стрелкой показан главный фермент метилирования — ДНК-метилтрансфера́за (DNMT), красным кругом — метильная группа (—СН3). Рисунок с сайта www.myshared.ru.

Наиболее изученным механизмом эпигенетической регуляции активности генов является процесс метилирования, который заключается в добавлении метильной группы (одного атома углерода и трех атомов водорода, —CH3) к цитозиновым основаниям ДНК, находящимся в составе CpG-динуклеотида (рис. 6). Уже известно, что метилирование ДНК у эукариот видоспецифично, и у беспозвоночных степень метилирования генома очень незначительна по сравнению с позвоночными и растениями.

Основы понимания функций метилирования были заложены еще полвека назад профессором МГУ Б.Ф. Ванюшиным и его коллегами. Хотя обычно считается (и вполне правильно), что метилирование «выключает» ген, не давая возможности регуляторным белкам связаться с ДНК, было обнаружено и обратное явление. Иногда метилирование ДНК выступает обязательным условием взаимодействия с белками — были описаны специальные m5CрG-связывающие белки [21].

Метилирование ДНК имеет наибольшее прикладное значение из всех эпигенетических механизмов, так как оно напрямую связано с рационом, эмоциональным статусом, мозговой деятельностью и другими факторами. Так что об этом стоит рассказать поподробнее. И начнем мы с рациона.

Сегодня уже известно, что многие пищевые продукты содержат компоненты, которые определенным образом влияют на эпигенетические процессы. Почти все женщины знают, что во время беременности очень важно потреблять достаточно фолиевой кислоты. Эпигенетика помогает понять исключительную важность этой кислоты в рационе: ведь всё дело в том самом метилировании ДНК. Фолиевая кислота вместе с витамином В12 и аминокислотой метионином является донором («поставщиком») метильных групп, необходимых для нормального метилирования. Метилирование непосредственно участвует во многих процессах, связанных с развитием и формированием всех органов и систем ребенка: и в инактивации Х-хромосомы у эмбриона, и в геномном импринтинге, и в клеточной дифференцировке*. Соответственно, принимая фолиевую кислоту, будущая мама имеет неплохие шансы выносить здорового ребенка без отклонений.

* — Подробно об этом написано в статьях на «биомолекуле»: «Загадочное путешествие некодирующей РНК Xist по X-хромосоме» [22] и «Истории из жизни Х-хромосомы круглого червя-гермафродита» [23].

Витамин В12 и метионин почти невозможно получить из вегетарианского рациона, так как они содержатся преимущественно в животных продуктах. И дефицит витамина В12 и метионина, вызванный разгрузочными диетами беременной женщины, может иметь для ребенка самые неприятные последствия. Не так давно было обнаружено, что недостаток в рационе этих двух веществ, а также фолиевой кислоты, может стать причиной нарушения расхождения хромосом у плода. А это сильно повышает риск рождения ребенка с синдромом Дауна, что обычно считается простой трагической случайностью [24]. В свете этих фактов ответственность родителей сильно увеличивается, и списывать всё на несчастный случай теперь будет затруднительно.

Также известно, что недоедание и стресс в период беременности меняют в «худшую сторону» концентрацию целого ряда гормонов в организмах матери и плода: глюкокортикоидов, катехоламинов, инсулина, гомона роста и др. Из-за этого у зародыша происходят негативные эпигенетические изменения (ремоделирование хроматина) в клетках гипоталамуса и гипофиза [25]. Чем это чревато? Тем, что малыш появится на свет с искаженной функцией гипоталамо-гипофизарной регуляторной системы. Из-за этого он будет хуже справляться со стрессом самой различной природы: с инфекциями, физическими и психическими нагрузками и т.д. Вполне очевидно, что, плохо питаясь и переживая во время вынашивания, мама делает из своего будущего ребенка уязвимого со всех сторон неудачника.

Пластичность эпигенома: опасности и возможности

Выяснилось, что так же, как стресс и недоедание, на здоровье плода могут влиять многочисленные вещества, искажающие нормальные процессы гормональной регуляции (рис. 7). Они получили название «эндокринные дизрапторы» (разрушители). Эти вещества, как правило, имеют искусственную природу: человечество получает их промышленным способом для своих нужд. Самым ярким и негативным примером, пожалуй, является бисфенол А, который уже много лет применяется в качестве отвердителя при изготовлении изделий из пластмасс. Он содержится во всей пластиковой таре, которая используется сегодня в пищевой промышленности: в пластиковых бутылках для воды и напитков, в пищевых контейнерах и многом другом. Бисфенол А присутствует в жестяных банках консервов и напитков (им выстилают внутренний слой банок), а также в стоматологических пломбах.

Источник

Рыбка почти заглотила наживку

Ин Джо ви траст Опять громкие заголовки из серии «США конфисковали российские активы, чтобы отдать их Украине». И теперь мы все умрём. Опять. Как уже много раз бывало. Во-первых, е...

Бессмысленность украинской капитуляции

Всё больше западных аналитиков и отставных военных торопятся отметиться в качестве авторов негативных прогнозов для Украины. Неизбежность и близость украинской катастрофы настолько очев...

Как Набиуллина ограбила Лондон

Запад потерял огромное количество российского золота, особенно не повезло Лондону. Такими выводами поделились журналисты из КНР. Есть смысл прислушаться к их аргументам:В последнее врем...

Обсудить
  • В целом - человек это мощная энерго-информационная система. Предназначенная не только для приёма информации из окружающего его мира и Вселенной (все органы человека, ДНК и клетки - это по своей сути антены), но и мощный передатчик, за счёт мозга. Но это надо в себе развивать. Дословное Слово Божие: "Вы не осознаёте силы своей", оно касается абсолютно всего, что существует на свете. Человек действительно создан по образу и подобию Божиему, но не так как говорится в религиях, а чисто в функциональном плане. Порследняя статья: Уничтожить еврейский сверхфашизм и сатанизм! (ОТКРЫТОЕ ПИСЬМО К ЧАДАМ БОЖИИМ.) https://cont.ws/@creatorgeorgiy/1372330
    • H5N1
    • 1 июля 2019 г. 19:29
    Очень интересная статья, но очевидно идёт в разрез с финансовыми интересами невероятно развитой и богатой пищевой промышленности. Все приведённые вводы этой статьи и ссылки на серьезные научные работы подводят к мысли, что 9-й вал аутизма, уже накрывший нашу цивилизацию имеет первопричиной эндокринные дизрапторы. Мои 5 коп в подтверждении этого тезиса: "Неопровержимые достижения цивилизации могут оказаться обладающими столь же неопровержимыми побочными эффектами" https://cont.ws/@h5n1/1356406
  • Лингвистико-волновая генетика (Гаряев П.П.) оперирует не только материальными генами, но и образами, записанными на каждой ДНК в виде многомерных/многочастотных голограмм (информационно-энергетических программ). Их хоть и сложно, но можно изменять, как на материальном, так и на информационном уровнях. См. https://wavegenetics.org/issledovania/ Кроме того, сами ДНК являются не только устройствами записи, но и воспроизведения. На этом эффекте и строится память как клеток, так и всего организма.