Как появилась жизнь: кто был самым первым на нашей планете

3 2311

Дарвин честно признавался: он не может дать ответ на вопрос, почему в ископаемой летописи старше примерно полумиллиарда лет не обнаружено никаких следов живых существ. Потом наука отыскала свидетельства жизни на 3 млрд лет старше. Однако живое отделилось от неживого раньше, и осязаемых следов этого события, похоже, не существует.

 

Именно поэтому таинство возникновения жизни, которое не может быть изучено на ископаемых материалах, является предметом теоретических и экспериментальных изысканий и проблемой не столько биологической, сколько геологической. Можно смело сказать: истоки жизни находятся на другой планете. И дело вовсе не в том, что первые биологические существа были принесены к нам из космоса (хотя подобные гипотезы и обсуждаются). Просто та, ранняя Земля была очень мало похожа на нынешнюю.

Великолепная метафора для понимания сущности жизни принадлежит знаменитому французскому естествоиспытателю Жоржу Кювье, который уподобил живой организм смерчу. И в самом деле, торнадо имеет множество признаков, роднящих его с живым организмом. Он поддерживает определенную форму, движется, растет, что-то вбирает в себя, что-то выбрасывает — и это напоминает обмен веществ. Смерч может раздваиваться, то есть как бы размножаться, и наконец, он преобразует среду. Но живет он лишь до тех пор, пока дует ветер. Иссякнет поток энергии — и смерч утратит и форму, и движение. Поэтому ключевым вопросом исследования биогенеза является поиск того потока энергии, который сумел «завести» процесс биологической жизни и обеспечил первым метаболическим системам динамическую стабильность, подобно тому как ветер поддерживает существование торнадо.

Животворящие «курильщики»

Одна из групп существующих ныне гипотез рассматривает в качестве колыбели жизни горячие источники на дне океанов, температура воды в которых может превышать сотню градусов. Подобные источники существуют и по сей день в районе рифтовых зон океанического дна и называются «черными курильщиками». Перегретая выше точки кипения вода выносит из недр растворенные до ионной формы минералы, которые часто тут же оседают в виде руды. На первый взгляд эта среда кажется смертельной для любой жизни, но уже там, где вода охлаждается до 120 градусов, живут бактерии — так называемые гипертермофилы.

Выносимые на поверхность сульфиды железа и никеля образуют на дне преципитат пирита и греигита- осадок в виде пористой шлакообразной породы. Некоторые современные ученые, например Майкл Рассел, выдвинули гипотезу о том, что именно эти насыщенные микропорами (пузырьками) породы стали колыбелью жизни. В микроскопических пузырьках могли формироваться и рибонуклеиновые кислоты, и пептиды. Пузырьки, таким образом, становились первичными катаклавами, в которых ранние метаболические цепочки обособились и превратились в клетку.

Гипотеза о происхождении жизни в горячих источниках интересна не только версией происхождения клетки, ее физического обособления, но и возможностью нащупать энергетическую первооснову жизни, направить исследования в область процессов, которые описываются не столько языком химии, сколько терминами физики.

Поскольку океаническая вода более кислая, а в гидротермальных водах и в поровом пространстве осадка — более щелочная, возникали разности потенциалов, что чрезвычайно важно для жизни. Ведь все наши реакции в клетках по своей природе электрохимические. Они связаны с переносом электронов и с ионными (протонными) градиентами, которые вызывают перенос энергии. Полупроницаемые стенки пузырьков играли роль мембраны, поддерживающей этот электрохимический градиент.

Драгоценность в белковом футляре

Разница сред — ниже дна (где сверхгорячей водой растворяются породы) и выше дна, где вода остывает, — также создает разность потенциалов, результатом которой является активное перемещение ионов и электронов. Такое явление даже получило название геохимической батареи.

Кроме подходящей среды для образования органических молекул и наличия энергетического потока, есть еще один фактор, позволяющий считать океанские гидротермы наиболее вероятным местом зарождения жизни. Это металлы.

Горячие источники находятся, как уже говорилось, в рифтовых зонах, где дно раздвигается и близко подступает горячая лава. Внутрь трещин проникает морская вода, которая затем выходит обратно в виде раскаленного пара. При огромном давлении и высоких температурах базальты растворяются, как сахарный песок, вынося наружу огромное количество железа, никеля, вольфрама, марганца, цинка, меди. Все эти металлы (и некоторые другие) играют колоссальную роль в живых организмах, поскольку имеют высокие каталитические свойства.

Реакции в наших живых клетках управляются ферментами. Это довольно большие белковые молекулы, которые увеличивают скорость реакции по сравнению с подобными реакциями вне клетки иногда на несколько порядков. И что интересно, в составе молекулы фермента на тысячи и тысячи атомов углерода, водорода, азота и серы подчас приходится всего 1−2 атома металла. Но если эту пару атомов вытащить, белок перестает быть катализатором. То есть в паре «белок-металл» именно последний оказывается ведущим. Зачем же нужна тогда большая молекула белка? С одной стороны, она манипулирует атомом металла, «прислоняя» его к месту реакции. А с другой стороны, она его бережет, защищает от соединений с другими элементами. И в этом есть глубокий смысл. Дело в том, что многие из тех металлов, что были в изобилии на ранней Земле, когда кислорода не было, и сейчас доступны — там, где кислорода нет. Например, в вулканических источниках много вольфрама. Но как только этот металл выходит на поверхность, где встречается с кислородом, то тут же окисляется и оседает. То же происходит с железом и другими металлами. Таким образом, задача большой белковой молекулы — сохранить металл активным. Все это наводит на мысль, что именно металлы первичны в истории жизни. Возникновение белков было фактором сохранения первичной среды, в которой металлы или их простые соединения сохраняли свои каталитические свойства, и обеспечило возможность их эффективного использования в биокатализе.

Водород как валюта

К древнейшему типу ферментов относятся гидрогеназы, которые катализируют простейшую из химических реакций — обратимое восстановление водорода из протонов и электронов. А активаторами этой реакции являются железо и никель, которые в изобилии присутствовали на ранней Земле. Немало было и водорода — он выделялся при дегазации мантии. Именно водород, похоже, был главным источником энергии для самых ранних метаболических систем. Ведь и в нашу эпоху подавляющее большинство реакций, осуществляемых бактериями, включают в себя действия с водородом. Как первичный источник электронов и протонов водород составляет основу энергетики микробов, являясь для них чем-то вроде энергетической валюты.

Жизнь зарождалась в бескислородной среде. Переход к дыханию кислородом требовал радикальных преобразований метаболических систем клетки, чтобы минимизировать активность этого агрессивного окислителя. Адаптация к кислороду возникала прежде всего в ходе эволюции фотосинтеза. До этого же основой энергетики живого был водород и его простые соединения — сероводород, метан, аммиак. Но это, вероятно, не единственное химическое отличие современной жизни от ранней.

Запасливые уранофилы

Возможно, самая ранняя жизнь не имела того состава, который имеет нынешняя, где в качестве базовых элементов преобладают углерод, водород, азот, кислород, фосфор, сера. Дело в том, что жизнь предпочитает более легкие элементы, с которыми проще «играть». Но эти легкие элементы имеют маленький ионный радиус и создают слишком прочные соединения. А жизни этого-то и не надо. Ей надо уметь эти соединения легко расщеплять. Сейчас у нас для этого есть множество ферментов, но на заре жизни их еще не существовало. Несколько лет назад мы высказали предположение, что у некоторых из этих шести основных элементов живого (макроэлементы C, H, N, O, P, S) были более тяжелые, но и более «удобные» предшественники. Вместо серы в качестве одного из макроэлементов, скорее всего, работал селен, который легко соединяется и легко диссоциирует. Место фосфора по той же причине, возможно, занимал мышьяк. Недавнее открытие бактерий, которые используют мышьяк вместо фосфора в своих ДНК и РНК, усиливает наши позиции. Причем все это справедливо не только для неметаллов, но и для металлов. Вместе с железом и никелем в процессе становления жизни значительную роль играл вольфрам. Корни жизни, таким образом, надо, вероятно, уводить в низ таблицы Менделеева.

Для подтверждения или опровержения гипотез об изначальном составе биологических молекул нам стоит обратить пристальное внимание на бактерий, живущих в необычных средах, возможно отдаленно напоминающих Землю в древние времена. Например, недавно японские ученые исследовали один из видов бактерий, обитающих в горячих источниках, и обнаружили в их слизистых оболочках урановые минералы. Для чего бактерии их накапливают? Возможно, уран имеет для них какую-то метаболическую ценность? Например, используется ионизирующий эффект радиации. Есть другой известный пример — магнитобактерии, которые существуют в аэробных условиях, в относительно холодной воде, и накапливают железо в виде кристалликов магнетита, обернутых в белковую мембрану. Когда железа в окружающей среде много — они формируют эту цепочку, когда железа нет — они его тратят и «сумочки» становятся пустыми. Это очень похоже на то, как у позвоночных накапливается жир в качестве энергетического запаса.

На глубине 2−3 км, в плотных осадках, оказывается, тоже живут бактерии и вполне обходятся без кислорода и солнечного света. Такие организмы обнаружены, например, в урановых шахтах Южной Африки. Питаются они водородом, и здесь его достаточно, потому что уровень радиации настолько высок, что вода диссоциируется на кислород и водород. Генетических аналогов на поверхности Земли у этих организмов не обнаружено. Где же эти бактерии сформировались? Где их предки? Поиск ответов на эти вопросы становится для нас настоящим путешествием во времени — к истокам живого на Земле.

Автор — академик РАН, директор Геологического института РАН

Статья «Тяжелый металл биогенеза» опубликована в журнале «Популярная механика» (№3, Март 2011).

https://www.popmech.ru/science...

  •  
Как это будет по-русски?

Вчера Замоскворецкий суд Москвы арестовал отца азербайджанца Шахина Аббасова, который зарезал 24-летнего москвича у подъезда дома на Краснодарской улице в столичном районе Люблино. Во время ...

О дефективных менеджерах на примере Куева

Кто о чём, а Роджерс – о дефективных менеджерах. Но сначала… Я не особо фанат бокса (вернее, совсем не фанат). Но даже моих скромных знаний достаточно, чтобы считать, что чемпионств...

"Все кончено": Вашингтон направил сигнал в Москву. Украины больше не будет

Решением выделить финансовую помощь Украине Вашингтон дал понять, что отношения с Москвой мертвы, заявил бывший советник Пентагона полковник Дуглас Макгрегор в интервью Youtube-каналу Judging Freedom....

Обсудить
  • Вероятность того, что две L-формы конкретных аминокислот расположатся в нужной последовательности в белке - один шанс из шести тысяч четырехсот (или 0.000156; чтобы получить эту величину необходимо умножить 0.0125 на 0.0125).    Для ста аминокислот вероятность их случайного попадания в строго определённое место белка составляет один шанс из 4.9 x 10-191. Для сравнения, можно напомнить, что в 4,5 миллиардах лет, (столько обычно отводят на эволюцию на нашей планете), "всего" 10 в 25-й секунд).
  • :thumbsup:
  • Все это интересно, но у меня вечный вопрос - это и сейчас происходит? Горячие источники есть, все условия, описанные в статье есть, новая жизнь зарождается прямо сейчас? Или нет?