Математика важна, но она далеко не «царица»

8 3996

Фразу «Математика – царица наук», родившуюся на стыке XVIII-XIX веков, по инерции продолжают произносить многие философы, историки науки и математики и в нашем XXI веке. Но есть ли основания для столь высокого статуса?

Чистая математика – это такой предмет, где мы не знаем, о чем мы говорим, и не знаем, истинно ли то, что́ мы говорим.

Бертран Рассел (1872–1970), британский математик и философ

Современная математика выполняет целый ряд задач, крайне далеких от науки. Тотальная математизация знания работает на изменение сознания человека. Такое изменение необходимо для того, чтобы у него формировалось искаженное представление о мире. А это, в свою очередь, необходимо для того, чтобы решить глобальную задачу построения «цифрового мира». Это проект «хозяев денег», с помощью которого они мечтают стать «хозяевами мира».

Сегодня официальная наука и СМИ в значительной степени находятся в услужении «хозяев денег». Они делают все возможное для того, чтобы представить математику как истину в последней инстанции. Для некоторых фанатов математики она даже не «царица», а «бог». Такое возвышение математики формирует у современного человека почти религиозное отношение к числу и цифре.

Я не математик, но историей математики интересуюсь. А как экономист я чувствую разрушительное влияние тотальной математизации на экономическое знание. Надо сказать, что даже среди самих математиков есть трезвые и честные ученые, которые приходят к признанию ограниченности математики в познании окружающего мира. Это, например, Игорь Ростиславович Шафаревич и Виктор Николаевич Тростников. Именно от них я с удивлением узнал о серьезнейшем кризисе, который математика переживала в ХХ веке. Свои знания о кризисе математики я дополнительно подкрепил книгой американского профессора математики Мориса Клайна«Математика. Утрата определенности». В Америке она вышла в 1980 году, а в Советском Союзе ее перевод на русский язык появился спустя четыре года. Она также переиздавалась в Российской Федерации.

Книга посвящена истории математики с древнейших времен до ХХ века включительно. Большим достоинством этой книги является то, что читать ее могут даже те, кто математиком не является: она говорит о сложном просто, по возможности заменяя язык математики на язык слов. В 1980-е годы я купил ее, поскольку меня заинтриговало авторское вступление. В нем, частности, говорилось:

Эта книга о глубоких изменениях, которые претерпели взгляды человека на природу и роль математики. Ныне мы знаем, что математика не обладает теми качествами, которые некогда снискали ей всеобщее уважение и восхищение. Наши предшественники видели в математике непревзойденный образец строгих рассуждений, свод незыблемых «истин в себе» и истин о законах природы. Главная тема этой книги — рассказ о том, как человек пришел к осознанию ложности подобных представлений и к современному пониманию природы и роли математики.

Математические затруднения или математическая софистика?

Что это за «ложные представления» в математике и о математике?

И. Шафаревич, В. Тростников и М. Клайн выделяют среди многообразия математических открытий ХХ века несколько главных, которые, по их мнению, особенно пошатнули статус математики как «царицы наук». Так, были открыты так называемые парадоксы теории множеств.

Выделяются парадоксы Рассела, Кантора, Ришара, Бурали-Форти. Сущность парадокса заключается в том, что с помощью логически правильных рассуждений удается обосновать (доказать средствами данной теории) одновременно некоторое утверждение и его отрицание. Это означает противоречивость данной теории. По законам логики в противоречивой теории доказуемо «все что угодно», то есть любое утверждение. Это очень напоминает искусство древнегреческих софистов, которые учили желающих аналогичным приемам. Не успели математики прийти в себя от нежданных «парадоксов», как возникли новые проблемы, свидетельствовавшие о нарастающем кризисе их науки. Во-первых, среди математиков наметились существенные расхождения во взглядах на основные математические понятия и принципы, а также на логические принципы, используемые в математике. Во-вторых, по-разному они смотрели на выбор путей избавления от упомянутых выше «парадоксов». В-третьих, обнаружились почти непреодолимые трудности обоснования непротиворечивости математики.

Казалось, что многие накопившиеся противоречия математики сможет решить школа Давида Гильберта. Свои идеи этот математик собрал в так называемой Гильбертовой программе, в которой предполагалось обосновать математику на небольшом логическом базисе, содержащемся в финитизме (представление о конечности мира).

Математики всегда кичились тем, что лучше них никто в логике не разбирается. И что этой «единственно правильной» логикой владеют именно они. И только в XX веке некоторые пытливые математики докопались до страшного для профессиональной корпорации математиков вывода: оказывается, может быть несколько логик. Так появились новые, неклассические логики, и важнейшей из них стала интуиционистская. Как следует из самого названия этого вида логики, он опирается не только на привычную логику, но и на интуицию. А это уже попахивает чем-то «ненаучным». Так можно и до Бога дойти.

В первой трети прошлого века представители неопозитивизма (те, кто полагали, что все можно познать, опираясь на формальную логику и математику) – Бертран Рассел (1872–1970), Людвиг Витгенштейн (1889–1951) и другие – продолжали доказывать, что человечество, вооруженное логикой и математикой, ни в Боге, ни в метафизике не нуждается.

Революция в физике «подлила масла»

Ситуация в мире науки еще более усугублялась тем, что на рубеже позапрошлого-прошлого веков началась самая настоящая революция в физике. Так, было открыто явление радиоактивности, но не находилось ответа на вопрос об источнике энергии, которую несет с собой радиоактивное излучение. Кое-кому это дало основание выступить с отрицанием всеобщности закона сохранения количества движения, закона сохранения материи, высказывалось сомнение и во всеобщности закона сохранения энергии. Открытие электрона подталкивало к пересмотру ранее созданных теорий, которые исходили из того, что атом – конечная инстанция материи. Как утверждают историки науки, 14 декабря 1900 года родилась квантовая механика. В этот день Макс Планк на заседании Немецкого физического общества ознакомил присутствующих со своей статьей «К теории распределения энергии излучения в нормальном спектре». Квантовая механика обнаружила вероятностный характер законов микромира, а также неустранимый корпускулярно-волновой дуализм в фундаменте материи. В связи с открытиями в квантовой механике стала меняться естественнонаучная картина мира, началась перестройка методологических установок во всем естествознании.

Некоторые физики (Э. Мах, Р. Авенарриус и др.) шли еще дальше и полностью переходили на позиции субъективного идеализма. Они исходили из того, что «материя исчезла» потому, что не природа дает нам законы, а мы устанавливаем их, и вообще, всякий закон есть не что иное, как упорядочение наших субъективных ощущений, и т.д. Многие физики скатились на позиции «физического идеализма», т.е. отказа от основной посылки физического знания — признания материальности объекта физического познания. Нет никакого сомнения, что революционно-кризисные события в физике не прошли не замеченными профессиональной корпорацией математиков, дав мощный импульс математической мысли.

Курт Гёдель и Альфред Тарский: полный «переполох в корпорации профессиональных математиков»

Но вот в 1931 году на горизонте появляется молодой австрийский математик Курт Гёдель со своими двумя теоремами о неполноте, из которых вытекает, что ключевые аспекты программы Гильберта не могут быть достигнуты. Не буду излагать массу нюансов теорем Гёделя, но все математики (включая самого Давида Гильберта) признали, что они были самым настоящим переворотом в науке. Некоторые трактовали открытие австрийца как твердое обоснование агностицизма (в гносеологии – представление о неспособности познания мира). Другие же (например, Бертран Рассел) призывали не преувеличивать, поскольку теоремы опирались на финитизм Гильберта. Марио Ливио, американо-израильский физик, в изданной у нас в 2016 году на русском языке книге «Был ли Бог математиком?» следующим образом комментирует теоремы Гёделя: «Вопреки распространенному заблуждению, теоремы о неполноте Гёделя не предполагают, что некоторые истины так и останутся навеки непознанными. Кроме того, из этих теорем не следует, что человеческие способности к познанию так или иначе ограниченны. Нет, теоремы всего лишь показывают слабости и недостатки формальных систем».

Через несколько лет (в 1936 году) в математическом мире возникла еще одна сенсация – на свет появилась теорема польского математика Альфреда Тарского (1901-1983). Она получила название теоремы невыразимости истины. Позднее в название было добавлено «арифметической» (истины). Как пишут учебники и энциклопедии, суть ее в том, что понятие арифметической истины не может быть выражено средствами самой арифметики. Впрочем, все мудреные профессиональные формулировки можно попытаться перевести на более простой и понятный русский язык.

В этом непревзойденным мастером был мой друг и старший товарищ Виктор Николаевич Тростников. Он пишет о том, что с XVII века математика благодаря заслугам немецкого философа, логика, механика и математика Лейбница (1646–1716) окончательно воссела на троне «царицы»:

Лейбниц объявил логико-арифметический язык универсальным инструментом познания, использование которого может открыть человечеству любую истину… к концу XIX – началу XX вв. они (ученые – В.К.) ожидали, что точные науки исчерпывающим образом объяснят не только как устроен мир, в котором мы живем, но и как устроены мы сами. На почве безграничной веры в силу логики и математики укрепилась космологическая доктрина абсолютного детерминизма всего происходившего, происходящего и того, что будет происходить, которую первым сформулировал еще на рубеже XVIII-XIX вв. великий французский математик и физик Лаплас. Напрягать воображение скоро будет ненужным делом, надо будет просто вычислить истину – произвести по определенным правилам ряд выкладок на каком-то счетном устройстве.

(Тростников В.Н. Имея жизнь, вернись к смерти. – М.: ИД «Дмитрий и Евдокия», 2013, с. 126-127).

Так как же относиться к математике?

И вот математическая эйфория, которая длилась без малого три века, закончилась в начале ХХ века. Тростников так описывает эту революцию:

Отрезвившие всех слова «а король-то голый» произнесла царица наук математика. Ей не поверить было нельзя, упрекать в невежестве – абсурдно. В 30-х годах ХХ века эта царица сама оповестила своих поклонников об ограниченности той власти, которую ей приписывали. Сначала австриец Курт Гёдель доказал, что во всяком логико-арифметическом языке существуют утверждения, которые по виду должны быть либо истинными, либо ложными, но которые средствами этого языка ни доказать, ни опровергнуть нельзя, а затем поляк Альфред Тарский доказал, что на таком языке невозможно даже просто сформулировать понятие истинности. Как это ни странно, многие даже очень хорошие профессиональные математики не знают о теореме Тарского…

(там же, с. 127-128).

Весь ХХ век ученые занимались «спасением» математики, спасательная операция продолжается до сих пор. Но об этих проблемах внутри профессиональной корпорации математиков знают почти исключительно математики да некоторые наиболее любознательные философы и представители естественных наук. Обратим внимание на слова Виктора Николаевича о том, что далеко не все можно доказать и не все можно опровергнуть с помощью логико-арифметического языка. Не является ли это еще одним убедительным доказательством того, что Слово выше числа?

Не об этом ли намекал в своем стихотворении «Слово» Николай Гумилев:

А для низкой жизни были числа,

Как домашний, подъяремный скот

Нет, поэт отнюдь не уничижал мир чисел и математики, ибо продолжением стиха были следующие слова:

Потому, что все оттенки смысла

Умное число передает.

И я не против математики. Не думайте, что я разделяю мнение Г. Грефа, который 16 октября заявил: «…не нужны нам математические школы. По-моему, это пережиток прошлого. Я категорический противник математических школ <…> Так было в Советском Союзе, и мне кажется, что это не очень хороший опыт».

Числа и математика человеку нужны. И «умными» должны быть не только «числа» (как у поэта Гумилева), но и математики. А это означает, что математики должны правильно понимать место числа в жизни человека. Число нужно для низкой и временной жизни. А для высокой и вечной жизни – Слово (у Гумилева – «Слово… в вышине»).


Валентин Катасонов.

http://reosh.ru/valentin-katas...

Как это будет по-русски?

Вчера Замоскворецкий суд Москвы арестовал отца азербайджанца Шахина Аббасова, который зарезал 24-летнего москвича у подъезда дома на Краснодарской улице в столичном районе Люблино. Во время ...

О дефективных менеджерах на примере Куева

Кто о чём, а Роджерс – о дефективных менеджерах. Но сначала… Я не особо фанат бокса (вернее, совсем не фанат). Но даже моих скромных знаний достаточно, чтобы считать, что чемпионств...

Обсудить
  • При всём моём уважении к Катасонову - именно математика царица НАУК! Подчеркиваю - НАУК! В двух словах не скажешь... К тому же, именно математика свидетельствует о Слове... Именно математика доказывает, что этот Мир сотворен, и сотворен не для пустого зала :blush: ... Творящее сотворенное: https://cont.ws/@kamenski/897033 Простёртое: https://cont.ws/@kamenski/898155 Физика как «искусство к созерцанию эйдосов»: https://cont.ws/@kamenski/898282 Спектакль для пустого зала? https://cont.ws/@kamenski/899318 Пролетая над камнями преткновения https://cont.ws/@kamenski/901843 «Кошка Шредингера» Иммануила Канта. Часть 1. https://cont.ws/@kamenski/902417 «Кошка Шредингера» Иммануила Канта. Часть 2. https://cont.ws/@kamenski/903517 Нужно ли доказывать существование сыра его дырам? https://cont.ws/@kamenski/904653 ''Ниспосланное богами безумие'' https://cont.ws/@kamenski/905915 Жеребенок, не лягай вскормившую тебя кобылу https://cont.ws/@kamenski/906897 SCHRITTE ÜBER GRENZEN https://cont.ws/@kamenski/908218 ПОЧЕМУ МЫ НЕ ПРОВАЛИВАЕМСЯ СКВОЗЬ ПОЛ, спросите не только Ричарда Фейнмана https://cont.ws/@kamenski/909767 Время Платона. Время у Канта. Время Канта. https://cont.ws/@kamenski/910754 Крыша из холста https://cont.ws/@kamenski/911891 Неминуемое допущение https://cont.ws/@kamenski/913090 Нужны доказательства? https://cont.ws/@kamenski/914181 Дар Адаму или Самая ирреальная реальность https://cont.ws/@kamenski/917343 Время Галилея, Ньютона, Эйнштейна - не страсть чувствовать себя существующим https://cont.ws/@kamenski/918419 1. «Что мы имеем ввиду…» (Пантагрюэль) https://cont.ws/@kamenski/919459 Желание посмотреть, крепок ли фундамент https://cont.ws/@kamenski/920524 Четыре опоры https://cont.ws/@kamenski/921713 Верхнее «фа» https://cont.ws/@kamenski/923779 Дурацкие модели https://cont.ws/@kamenski/925264 Снова Кантhttps://cont.ws/@kamenski/926354 А теорема Тарского о невыразимости истины, на мой взгляд, это частный случай теоремы Гёделя о неполноте ...
  • Статья -- бред сивой кобылы ! Математика -- базовый фундамент точных наук и инженерии . Это первое . Второе . Математика в школе развивает мозг . Решение задач по математике от простого к сложному увеличивает количество клеток поверхности мозга . Это примерно то же самое , что наращивать мышечную массу тела в спорт.зале , напрягая мышцы гантелями . Понятно , что хорошо развитый мозг ещё никому не помешал в жизни , как , собственно , и накачанное тело .
    • CYXOB
    • 21 ноября 2018 г. 12:45
    Как-то странно указать на проблемы и сделать вывод, что не царица. Проблемы и парадоксы говорят лишь о том, что есть куда двигаться и познавать. Точно так же, как с приведённым в тексте примером корпускулярно-волнового дуализма из физики откуда выросла квантовая механика.
  • Давайте представим себе портного-безумца, который шьет всевозможные одежды. Он ничего не знает ни о людях, ни о птицах, ни о растениях. Его не интересует мир, он не изучает его. Он шьет одежды. Не знает, для кого. Не думает об этом. Некоторые одежды имеют форму шара без всяких отверстий, в другие портной вшивает трубы, которые называет «рукавами» или «штанинами». Число их произвольно. Одежды состоят из разного количества частей. Портной заботится лишь об одном: он хочет быть последовательным. Одежды, которые он шьет, симметричны или асимметричны, они большого или малого размера, деформируемы или раз и навсегда фиксированы. Когда портной берется за шитье новой одежды, он принимает определенные предпосылки. Они не всегда одинаковы, но он поступает точно в соответствии с принятыми предпосылками и хочет, чтобы из них не возникало противоречие. Если он пришьет штанины, то потом уж их не отрезает, не распарывает того, что уже сшито, ведь это должны быть все же костюмы, а не кучи сшитых вслепую тряпок. Готовую одежду портной относит на огромный склад. Если бы мы могли туда войти, то убедились бы, что одни костюмы подходят осьминогу, другие – деревьям или бабочкам, некоторые – людям. Мы нашли бы там одежды для кентавра и единорога, а также для созданий, которых пока никто не придумал. Огромное большинство одежд не нашло бы никакого применения. Любой признает, что сизифов труд этого портного – чистое безумие. Точно так же, как этот портной, действует математика. Она создает структуры, но неизвестно чьи. Математик строит модели, совершенные сами по себе (то есть совершенные по своей точности), но он не знает, модели чего он создает. Это его не интересует. Он делает то, что делает, так как такая деятельность оказалась возможной. Конечно, математик употребляет, особенно при установлении первоначальных положений, слова, которые нам известны из обыденного языка. Он говорит, например, о шарах, или о прямых линиях, или о точках. Но под этими терминами он не подразумевает знакомых нам понятий. Оболочка его шара не имеет толщины, а точка – размеров. Построенное им пространство не является нашим пространством, так как оно может иметь произвольное число измерений. Математик знает не только бесконечности и трансфинитности, но также и отрицательные вероятности. Если нечто должно произойти наверное, его вероятность равна единице. Если же явление совсем не может произойти, она равна нулю. Оказывается, что может случиться нечто меньшее, чем просто ненаступление события. Математики прекрасно знают, что не знают, что делают. Весьма компетентное лицо, а именно Бертран Рассел, сказал: «Математика может быть определена как доктрина, в которой мы никогда не знаем, ни о чем говорим, ни того, верно ли то, что мы говорим». (с) С.Лем "Сумма технологий"
  • :thumbsup: :thumbsup: :thumbsup: Математика - чпсть физики, которая делает более дешевыми экспериментальные исследования. (не точная цитата). © В.И. Арнольд