Гелий 3 - мифическое топливо будущего

12 7596

Наверное мало чего в области термоядерной энергетики окружено мифами, как Гелий 3. В 80х-90х он был активно популяризирован, как топливо, которое решит все проблемы управляемого термоядерного синтеза, а так же как один из поводов выбраться с Земли (т.к. на земле его буквально считанные сотни килограмм, а на луне миллиард тонн) и заняться, наконец, освоением солнечной системы. Все это базируется на очень странных представлениях о возможностях, проблемах и потребностях несуществующей сегодня термоядерной энергетики, о чем мы и поговорим.

Машина для добычи гелия3 на луне уже готова, дело за малым - найти ему применение.

Когда говорят про гелий3, то имеют в виду реакции термоядерного слияния He3 + D -> He4 + H или He3 + He3 -> 2He4 + 2H. По сравнению с классической D + T -> He4 +n в продуктах реакции нет нейтронов, а значит нет активации сверхэнергичными нейтронами конструкции термоядерного реактора. Кроме того, проблемой считается тот факт, что нейтроны из “классики” уносят из плазмы 80% энергии, поэтому баланс самонагрева наступает при бОльшей температуре. Еще одним записываемым гелиевому варианту преимуществом является то, что электроэнергию можно снимать прямо с заряженных частиц реакции, а не нагревом нейтронами воды - как в старых угольных электростациях.

Так вот, все это - неправда, точнее очень маленькая часть правды.


Начнем с того, что при одинаковой плотности плазмы и оптимальной температуре реакция He3 + D даст в 40 раз меньше энерговыделение на кубометр рабочей плазмы. При этом температура, нужная для хотя бы 40 кратного разрыва будет в 10 раз выше - 100 кЭв (или один миллиард градусов) против 10 для D +T. Сама по себе, такая температура вполне достижима (рекорд токамаков на сегодня - 50 кЭв, всего в два раза хуже), но что бы завязать энергобаланс (скорость остывания VS скорость нагрева в т.ч. самонагрева) нам нужно поднять в 50 раз энерговыделение с кубометра He3 +D реакции, что можно сделать только подняв плотность в те же в 50 раз. В сочетании с выросшей в 10 раз температурой это дает увеличение давления плазмы в 500 раз - с 3-5 атм до 1500-2500 атм, и такое же увеличение противодавления, что бы эту плазму удержать.

Зато картинки вдохновляющие.
Помните, я писал, что магниты тороидального поля ИТЭР, которые создают противодавление плазме - абсолютно рекордные изделия, единственные по параметрам в мире? Так вот, поклонники He3 предлагают сделать магниты в 500 раз мощнее.

Ок, забудем про сложности, может преимущества этой реакции их окупают?

Разные термоядерные реакции, которые применимы для УТС. He3 + D дает слегка больше энергии, чем D + T, но на преодалевание кулоновского отталкивания тратится очень много энергии (заряд 3 а не 2), поэтому реакция идет медленно.

Начнем с нейтронов. Нейтроны в промышленном реакторе будут представлять собой серьезную проблему, повреждать материалы корпуса, греть все элементы обращенные к плазме настолько, что их придется охлаждать приличным расходом воды. А главное - активация материалов нейтронами приведут к тому, что и через 10 лет после остановки термоядерного реактора у нем будет тысячи тонн радиоактивных конструкций, которые невозможно разбирать руками, и которые будут вылеживаться уже в хранилище сотни и тысячи лет. Избавление от нейтронов очевидно бы облегчило задачу создания термоядерной электростанции.

Одна маленькая проблемка - нейтроны от He3 + D реакции будут. Они будут рождаться в ходе паразитной реакции D + D ->T + n, а получившийся тритий тут же будет сгорать и давать еще один нейтрон. С учетом того, что дотянуться до зажигания гелия3 крайне непросто, при минимальных параметрах конфаймента (конфаймент - фактически теплоизоляция плазмы магнитным полем), при которых он будет гореть, в виде нейтронов будет выделятся 2-3% энергии термоядерной реакции. Да, это в 25-40 раз меньше, чем в случае D + T, но это в ваттах, а в штуках нейтронов разница составит всего 4 раза, они просто гораздо менее энергичные, чем от D + T. Радиоактивных изотопов в стенах реактора в итоге будет где-то в 10 раз меньше, но сути это не меняет - ядерный объект, с дорогой, сложной и контролируемой атомнадзором эксплуатацией.

Скорости ТЯ реакций в зависимости от температуры. В максимуме, при 1 миллиарде градусов, D + He3 обгоняет паразитную D +D всего в 3,6 раза, отсюда нейтроны. 

Доля энергии, уносимая нейтронами. Если добавить побольше He3 в реактор, то можно снизить ее до 1%, но это еще ужесточит условия зажигания.

Ок, ну а как насчет прямого преобразования энергии заряженных частиц в электричество? Опыты показывают, что поток ионов с энергией 100 кЭв можно преобразовать в электричество с 80% кпд. У нас же тут нет нейтронов…. ну в смысле они не уносят всю энергию, которую мы можем получить только в виде тепла - давайте избавимся от паровых турбин и поставим ионные коллекторы?

Да, технологии прямого преобразования энергии плазмы в электроэнергию есть, они активно исследовались в 60х-70х, и показали кпд в районе 50-60% (не 80, надо заметить). Однако эта идея слабо применима как в D +T реакторах, так и в He3 +D. Почему это так, помогает понять вот эта картинка.

На ней показаны потери тепла плазмой по разным каналам. Сравните D+T и D + He3. Transport - это то, что можно использовать для прямого преобразования энергии плазмы в электроэнергию. Если в D + T варианте у нас все забирают мерзкие нейтроны, то в случае He3 + D все забирает электромагнитное излучение плазмы, в основном синхротронное и рентгеновское тормозное (на картинке Bremsstrahlung). Ситуация практически симметричная, все равно надо отводить тепло от стенок и все равно прямым преобразованием мы не может вытащить больше 10-15% энергии термоядерного горения, а остальное - по старинке, через паросиловую машину.

Иллюстрация в исследовании по прямому преобразованию энергии плазмы на крупнейшей открытой ловушке Gamma-10 в японии. 
Кроме теоретических ограничений есть и инженерные - в мире (в т.ч. в СССР) были потрачены гигантские усилия на создание установок прямого преобразования энергии плазмы в электричество для обычных электростанций, что позволяло поднять кпд с 35% до 55%. В основном на базе МГД-генераторов. 30 лет работы больших коллективов закончились пшиком - ресурс установки составлял сотни часов, когда энергетикам нужны тысячи и десятки тысяч. Гигантское количество ресурсов, потраченное на эту технологию привело, в частности, к тому, что наша страна отстала в производстве энергетических газовых турбин и установок парогазотурбинного цикла (которые дают ровно такое же повышение кпд - с 35 до 55%!).


Кстати, мощные сверхпроводящие магниты нужны и для МГД-генераторов. Здесь показаны СП магниты для 30 мегаваттного МГД-генератора. 

Но вернемся к He3. Резюме этого разрекламированного изотопа такое - если бы параметры плотности и температуры плазмы нам бы давались бесплатно, то He3 обещал бы некоторые преимущества при некоторых недостатка по сравнению с D + T. Примерно как дизель и бензиновый двигатель. Однако, по моим статьям вы можете видеть, НАСКОЛЬКО не бесплатно даются эти самые параметры плотности и температуры. Никакие гипотетические плюсы He3 не окупают даже близко необходимости в 500 раз поднимать давление плазмы. И, думается, гипотетические магнитные ловушки, которые нам обещают (но пока не сделали) на смену “изжившим” себя токамакам этой ситуации не поменяют.

aftershock

Страна вернула патронный завод
  • pretty
  • Вчера 07:21
  • В топе

АМАРАНТ"Всё для победы!" По иску прокуратуры легендарный Климовский патронный завод забрали у ловчил-прихватизаторов. Страна вернула патронный заводКлимовский специализированный патронны...

Позиции ВСУ сровняли так, что хоронить не надо. Сводка СВО на утро 16 мая

Под Харьковом бои не утихают, а, наоборот, разгораются с новой силой. По информации Министерства обороны, подразделения группировки войск «Север» продолжают наносить массированные артил...

Обсудить
  • Нейтронное излучение это жесть конечно :)
  • Кстати интересно было бы посмотреть и для других реакций эти параметры, например вот по этой таблице.
  • Автор высказал своё мнение, как человек не компетентный, я приводил в своей статье выдержки из интервью с действующим профессором РАН по ядерной энергетике, экспертов в своей области. Это не домыслы какого-то интернет фантазера, называющего себя блоггером. Так что неуважаемый автор, читайте про Гелий-3 в первоисточниках, а не по надписям на заборе.
    • Kir
    • 12 мая 2015 г. 21:18
    Думаю, что больший процент читателей конта, прочитав эту статью поймут, что они знают, что ничего не знают.
  • Статья конечно познавательная хотя если честно в физике термоядерных реакций не специалист, в связи с этим лично у меня возник вопрос. Я на конте один такой?