☕️ Ученые создали уникальный материал для OLED-дисплеев будущего. Что нас ждет

0 146

 Команда исследователей из Университета Мичигана совершила прорыв в области светящихся материалов, открыв универсальную молекулу, которая обладает рекордной эффективностью как в твёрдом, так и в жидком состоянии. Это открытие может существенно расширить возможности применения таких молекул — от современных OLED-дисплеев и сенсоров до биотехнологических визуализаций, при этом снизив производственные издержки. Это не все преимущества технологии, которая может сделать смартфоны будущего еще более интересными.

Ⓒ AndroidInsider.ru, Артем Сутягин, 09.07.2025

Новый тип дисплеев будет еще лучше, ярче и экономичней. 

Из чего делают OLED дисплеи

Разработка новых светоизлучающих молекул обычно начинается с жидкой фазы, поскольку работать с растворами проще. Однако переход в твёрдое состояние часто приводит к потере важных свойств, что затрудняет дальнейшее применение и приводит к потере времени и ресурсов. Новый универсальный флуорофор преодолевает это ограничение, сохраняя высочайшую эффективность в обеих фазах.

Флуоресцентные молекулы, или флуорофоры, способны поглощать свет и испускать его на более длинных волнах. Это свойство лежит в основе работы пикселей OLED-дисплеев и широко используется в различных биомедицинских задачах, например, для отслеживания процессов внутри клеток и тканей.

Обычно для дисплеев и датчиков требуются твёрдые флуорофоры, а для биологических целей — жидкие. Большинство известных молекул не обеспечивают одинаково высокую производительность в обеих формах, но новое соединение стало исключением.

Характеристики нового дисплея

Открытый материал отличается уникальными показателями. Среди них квантовая эффективность, которая в твёрдом состоянии составляет 98%, а в растворе — 94%. По словам профессора Джинсанга Кима из Мичиганского университета, под его руководством учёные получили молекулу, к которой проявлен значительный интерес со стороны различных отраслей.

Таких показателей раньше не было. 

Новую молекулу назвали TGlu. Её структура предельно проста — одно бензольное кольцо с симметрично расположенными двумя донорами и двумя акцепторами электронов. Благодаря компактности и близости этих групп, TGlu не теряет эффективность при изменении агрегатного состояния.

Перспективы применения TGlu

Примечательно, что открытие TGlu произошло случайно, как это часто бывает в научных исследованиях. Первоначально молекула была лишь промежуточным продуктом, но по своим свойствам превзошла ожидания учёных. Стабильное синее свечение TGlu под воздействием видимого света уже сейчас можно использовать для новых дисплеев, сенсоров, а со временем — и в биотехнологиях.

Кроме того, модификация структуры TGlu (например, введение атомов фосфора) позволит создавать вещества, испускающие красный и зелёный свет, а также повысить эффективность флуоресценции.

Универсальность TGlu обещает упростить масштабирование производства, что ускорит внедрение новых решений в промышленность. Открытие закладывает основу для разработки целого семейства флуоресцентных материалов для современных дисплеев, сенсорных и биотехнологических устройств. Это большой шаг к созданию более ярких, эффективных и экономичных экранов будущего. Но ждать их уже завтра не стоит. Любая технология должна пройти тестирование и привлечь внимание заказчиков. Этого придется подождать, но скорее всего именно это наше будущее и путь к сверхярким экранам.