Ученые испытали надежный сверхпроводящий кабель

1 730

 

T. Henderson / Wikimedia commons

Исследователи из Новой Зеландии, США и Швейцарии создали и протестировали высокотемпературный сверхпроводящий кабель, отличающийся надежностью, простотой конструкции, термостойкостью и высокой механической стабильностью. Результаты экспериментов опубликованы в журнале Superconductor Science and Technology.

Сверхпроводимость — состояние материала, подразумевающее отсутствие электрического сопротивления. Оно наблюдается более чем у сотни элементов и соединений, и их число постоянно пополняется. Состояние достигается при охлаждении вещества или соединения до определенной (критической) температуры и при нормальном давлении эта температура ниже 100 кельвин для большинства материалов.

С помощью сверхпроводников можно получать сильные магнитные поля, которые можно применять, например, в токамаках и стеллараторах — реакторах для управляемого термоядерного синтеза, а также в коллайдерах, маглевах и в других интересных проектах. Обмотка реакционной камеры из сверхпроводящего кабеля в токамаке организует тороидальные магнитные поля, которые удерживают плазму на расстоянии от стенок камеры, которые не способны выдержать температуру плазмы, равную 10и более кельвин.

Проблема в том, что сверхпроводящие кабели имеют ненадежную многослойную конструкцию, а сильное магнитное поле способно выдавить жилы сверхпроводника из-под обмотки кабеля наружу. Обслуживать и производить кабели дорого, они нуждаются в регулярной подаче криогенного охладителя для поддержания состояния сверхпроводимости. Кроме того, монтировать такие кабели сложно — места контакта уязвимы и недолговечны. Любое нарушение структуры приводит к возникновению электрического сопротивления и нагреву, что разрывает цепочку сверхпроводимости. Эти недостатки тормозят изучение управляемого термоядерного синтеза, увеличивая себестоимость энергии, полученной таким путем.

Захари Хартвиг (Zachary S Hartwig) из Массачусетского технологического института вместе с коллегами представил сверхпроводящий кабель, совмещающий в себе относительно небольшую стоимость изготовления и высокую надежность. Разработка получила название VIPER (Vacuum pressure impregnated, Insulated, Partially transposed, Extruded and Roll-formed) — акроним технологических процессов его изготовления и структуры. Основа кабеля состоит из впаяных в медный сердечник методом вакуумной пропитки скрученных лент сверхпроводниковых материалов GdBa2Cu3O7−δ и YBa2Cu3O7−x — оксидов гадолиния-бария-меди и иттрия-бария-меди. В центре кабеля расположен канал для хладагента. Сверху кабель покрыт дополнительной медной оболочкой и опционально может быть обернут нержавеющей сталью. Именно за счет паяной цельной конструкции и оптимального соотношения толщины медного основания и сверхпроводящих лент достигается высокая стабильность кабеля.

Реклама

Создатели отмечают простоту соединения нескольких кабелей такого типа между собой: конец кабеля покрывают серебром, а контакт происходит с помощью двояковогнутого соединительного элемента из меди с проволокой из индия, в пазы которого вкладываются кабели. Конструкцию легко можно дублировать на большие длины и ее стоимость обещает быть невысокой при ожидаемом спросе 1000 километров в год на сверхпроводящие кабели.

 

Структура сверхпроводящего кабеля VIPER

Zachary S Hartwig et al./ Superconductor Science and Technology, 2020

 

Разработку испытали в Институте Пауля Шеррера, в Швейцарии на установке для тестирования магнитов и кабелей SULTAN, способной генерировать магнитное поле до 11 Тесла и ток до 100 килоампер. Несколько кабелей подвергали воздействию сил равных от 136 до 382 килоньютон на метр, при прохождении максимального тока до 35 килоампер и магнитного поля 10,9 Тесла на метр, в течение от 150 до 2000 циклов работы. При максимальной нагрузке 382 килоньютон на метр, что почти в четыре раза больше предыдущего рекорда в 102 килоньютон на метр, деградация проводящих свойств оказалось незначительной, и составила не более 4,1 процента. Конструкция кабеля также показала высокую криостабильность и выдержала три последовательных тепловых импульса от нагревателя мощностью 45 ватт, быстро возвращаясь к рабочему значению температуры и сохраняя сверхпроводящие свойства.

Конструкторы утверждают, что их кабель планируется использовать в проекте нового токамака SPARC, строительство которого запланировано на 2021 год. В отличие от купратов-керамиковв роли сверхпроводников в кабеле VIPER, сверхпроводимость в твердом материале на основе сероводорода и метана недавно достигли при температуре выше нуля градусов Цельсия. Правда, давление, необходимое для сохранения сверхпроводимости в этом материале, должно превышать 1,4 миллиона атмосфер. 

Роман Колесов

https://nplus1.ru/news/2020/10...

30 лет своей "свободы от русских"...

Памятка мигранту.Ты, просрав свою страну, пришёл в мою, пришёл в наш дом, в Россию, и попросил у нас работу, чтобы твоя семья не умерла с голоду. Ты сказал, что тебе нечем кормить своих...

Во всём виноват Залужный. Запад, британские олигархи и Зеленский пытаются снять с себя ответственность за подрыв "Северных потоков"
  • Andreas
  • Вчера 20:11
  • В топе

Все фирмы, причастные к строительству газопровода, страховали риски в британских компаниях. Теперь Великобритания отказывается выплачивать компенсации, аргументируя диверсию "военными действи...

Подполье сообщило об ударе по железнодорожной станции в Балаклее
  • voenkorr
  • Сегодня 10:07
  • В топе

Вооруженные силы России нанесли удар по железнодорожной станции в Балаклее в Изюмском районе Харьковской области во время выгрузки из поезда личного состава ВСУ, сообщил РИА Новости координатор никола...

Обсудить
  • Любопытно как лабораторное исследование. Но практического применения все эти конструкции не найдут. Пока не будет сверхпроводника, сохраняющего свои свойства при температурах хотя бы до 20 грд. С, все эти изыски будут иметь только лабораторное применение.