«Аль-кита́б аль-мухтаса́р фи хиса́б аль-дже́бр ва-ль-мука́баля» (араб. الْكِتَاب الْمُخْتَصَر فِي حِسَاب الْجَبْر وَالْمُقَابَلَة — «Краткая книга восполнения и противопоставления») — математический трактат Мухаммеда ибн Мусы аль-Хорезми (IX век), от названия которого произошёл термин алгебра. Также благодаря этой книге появился термин алгоритм
Трактат аль-Хорезми — важная веха развития арифметики и классической алгебры, науки о решении уравнений. Он на столетия определил характер алгебры как практической науки без аксиоматической основы. В трактате аль-Хорезми систематизировал и изложил два известных ему выдающихся достижения индийских математиков — арифметику в позиционной десятичной системе счисления и решение квадратного уравнения[1]. Эти результаты были получены Брахмагуптой и его предшественниками не позднее VII века. Но поскольку Европа познакомилась с этими достижениями по латинскому переводу XII века книги аль-Хорезми, начало развития современной европейской математики оказалось связанным с его книгой и его именем.
Трактат делится на три части:
уравнения первой и второй степени с упражнениями
практическая тригонометрия
решения задач по распределению наследства
В теоретической части своего трактата аль-Хорезми даёт классификацию уравнений 1-й и 2-й степени и выделяет шесть видов квадратного уравнения {\displaystyle ax^{2}+bx+c=0} ax^{2}+bx+c=0:
«квадрат» равен «корню» {\displaystyle ax^{2}=bx} ax^{2}=bx;
«квадрат» равен свободному члену {\displaystyle ax^{2}=c} ax^{2}=c;
«корень» равен свободному члену {\displaystyle bx=c} bx=c;
«квадрат» и «корень» равны свободному члену {\displaystyle a^{2}+bx=c} a^{2}+bx=c;
«квадрат» и свободный член равны «корню» {\displaystyle ax^{2}+c=bx} ax^{2}+c=bx ;
«корень» и свободный член равны «квадрату» {\displaystyle bx+c=ax^{2}} bx+c=ax^{2}.
Такая сложная классификация объясняется требованием, чтобы в обеих частях уравнения стояли положительные коэффициенты, и при этом аль-Хорезми искал только положительные корни.
Охарактеризовав каждый вид уравнений и показав на примерах правила их решения, аль-Хорезми даёт геометрическое доказательство этих правил для трёх последних видов, когда решение не сводится к простому извлечению корня.
Для приведения квадратно канонических видов аль-Хорезми вводит два действия. Первое из них, аль-джабр, состоит в перенесении отрицательного члена из одной части в другую для получения в обеих частях положительных членов. Второе действие — аль-мукабала — состоит в приведении подобных членов в обеих частях уравнения. Кроме того, аль-Хорезми вводит правило умножения многочленов. Применение всех этих действий и введённых выше правил он показывает на примере 40 задач.
Данные шесть типов уравнений на протяжении веков были «ядром» алгебры. Только в 1544 году Михаэлем Штифелем (нем. Michael Stifel) были допущены отрицательные коэффициенты, что позволило снизить количество типов уравнений.
Геометрическая часть
Геометрическая часть посвящена, в основном, измерению площадей и объёмов геометрических фигур.
Практическая часть
В практической части автор приводит примеры применения алгебраических методов в решении хозяйственно-бытовых задач, при измерении земель, строительстве каналов. В «главе о сделках» рассматривается правило для нахождения неизвестного члена пропорции по трём известным членам, а в «главе об измерении» — правила для вычисления площади различных многоугольников, приближённая формула для площади круга и формула объёма усечённой пирамиды). К нему присоединена также «Книга о завещаниях», посвящённая математическим задачам, возникающим при разделе наследства в соответствии с мусульманским каноническим правом.
Термин «алгоритм»
Латинский перевод книги начинается словами «Dixit Algorizmi» (сказал Алгоризми). Так как сочинение об арифметике было очень популярно в Европе, то латинизированное имя автора (Algorizmi или Algorizmus) стало нарицательным и средневековые математики так называли арифметику, основанную на десятичной позиционной системе счисления. Позднее европейские математики стали называть так всякое вычисление по строго определённым правилам. В настоящее время термин алгоритм означает набор инструкций, описывающих порядок действий исполнителя для достижения результата решения задачи за конечное число действий.
Книга сохранилась в арабской копии и нескольких переводах на латынь.
Оценил 21 человек
46 кармы